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In many forested ecosystems, the architecture and functional ecology of certain tree species 

defines forest structure and their species-specific traits control ecosystem dynamics. Such 

foundation tree species are declining throughout the world due to introductions and outbreaks of 

pests and pathogens, selective removals of individual taxa, and over-harvesting. Through a series 

of case-studies, we illustrate that the loss of foundation tree species changes the local 

environment on which a variety of other species depend; disrupts fundamental ecosystem 

processes, including rates of decomposition, nutrient fluxes, carbon sequestration, and energy 

flow; and dramatically alters the dynamics of associated aquatic ecosystems. Forests in which 

dynamics are controlled by one or a few foundation species appear to be dominated by a small 

number of strong interactions, and may be highly susceptible to switching between alternative 

stable states following even small perturbations. Ongoing declines of many foundation species 

provide a set of important, albeit unfortunate, opportunities to develop the research tools, 

models, and metrics needed to identify foundation species, anticipate the cascade of immediate, 

short-term, and long-term changes in ecosystem structure and function that will follow from their 

loss, and provide options for remedial conservation and management.
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In a nutshell: 50 
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1. In many ecosystems, a single foundation species controls population and community 

dynamics and modulates ecosystem processes 

2. The loss of foundation species acutely and chronically impacts fluxes of energy and 

nutrients, hydrology, food webs, and biodiversity 

3. Human activities including logging and the introduction of exotic pests and pathogens 

often functionally remove foundation tree species from forests 

4. Foundation species that are currently being lost from North American forests include 

eastern hemlock, Port-Orford cedar, and oaks 
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 We are living in an era of unprecedented and rapid ecological change (Reid et al. 2005). 

Through habitat conversion, over-consumption of resources, and worldwide introductions of 

pests and pathogens, humans are causing species extinctions at an unprecedented rate: the sixth 

extinction crisis in the billion-year history of eukaryotic life on Earth (Eldridge 1998). The loss 

of a common or abundant foundation species (sensu Dayton 1972; see Panel 1), which by virtue 

of its structural or functional attributes creates and defines an entire ecological community or 

ecosystem, can have dramatic effects on our perception of the landscape and broad consequences 

for associated biota, ecosystem function, and stability. Foundation species differ from keystone 

predators (Paine 1966) in that the former usually occupy low trophic levels whereas the latter are 

usually top predators, and differ from core species (Hanski 1982) in that foundation species not 

only are locally abundant and regionally common, but also both create locally stable conditions 

required by many other species and stabilize fundamental ecosystem processes such as 

productivity and water balance.  
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In forested ecosystems, trees are most likely to be foundation species. Their architecture 

and functional and physiological characteristics define forest structure and alter microclimates, 

while their biomass and chemical make-up contribute substantially to ecosystem processes. 

Foundation tree species are declining throughout the world due to: introductions and outbreaks 

of nonindigenous pests and pathogens; irruptions of native pests; over-harvesting and high-

intensity forestry; and deliberate removal of individual species from forests. We elaborate three 

examples from North America to illustrate consequences for both terrestrial and aquatic habitats 

of the loss of foundation tree species: the ongoing decline of eastern hemlock (Tsuga canadensis 

(L.) Carr.) resulting from an introduced insect and preemptive salvage logging; the local 

extirpation of whitebark pine (Pinus albicaulis Engelm.) caused by interactions among a non-
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native pathogen, a native insect, and human alteration of fire regimes; and the functional removal 

of American chestnut (Castanea dentata (Marshall) Borkh.) by an introduced pathogen. Our 

examples focus on trees in systems we know best, but they are broadly representative of a wide 

range of foundation species and illustrative of their role in forests throughout the world (Panel 2). 

 

The rise and fall of eastern hemlock 

Majestic hemlock groves (Fig. 1) evoke reverence, affection, and poetry (Frost 1923). 

Eastern hemlock, one of the most long-lived, shade-tolerant trees in North America, dominates 

ca. 1 × 106 ha of forest from the southern Appalachians to southern Canada and west to the 

central Lake states (McWilliams and Schmidt 2000). In the north, hemlock typically occurs in 

nearly pure stands with species-poor understories. In the south, hemlocks grow in mixed stands 

in narrow riparian strips and moist coves, often with dense understories of rhododendron 

(Rhododendron maximum L.). In hemlock-dominated stands, the combination of deep shade and 

acidic, slowly-decomposing litter results in a cool, damp microclimate, slow rates of nitrogen 

cycling, and nutrient-poor soils (Jenkins et al. 1999). Canopies of evergreen hemlocks have 

higher leaf area index and lower transpiration rates per unit leaf area than canopies of co-

occurring deciduous trees (Catovsky et al. 2002). Although hemlocks have much greater whole-

tree respiration rates in the spring and fall when deciduous trees are leafless, during the summer 

hemlocks transpire ~50% of the water transpired by deciduous trees (J. Hadley, unpublished 

data). These characteristics of hemlock, along with its high snow-interception rates, mediate soil 

moisture levels, stabilize stream base-flows, and decrease diel variation in stream temperatures. 

As a result, streams flowing through hemlock forests support unique assemblages of 
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salamanders, fish, and freshwater invertebrates intolerant of seasonal drying (Snyder et al. 2002). 

Hemlock stands also shelter deer and other wildlife. 
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Populations of eastern hemlock have declined precipitously three times since the 

Pleistocence glaciation: ~5500 years ago coincident with regional climate change and an 

outbreak of an insect similar to the extant eastern hemlock looper (Lambdina fiscellaria Hulst.) 

(Bhiry and Filion 1996); ~200 years ago following forest conversion to agriculture, increases in 

fire, and extensive logging for timber and tannin (McMartin 1992); and from the mid-1980s to 

the present, due to an introduced insect, the hemlock woolly adelgid (Adelges tsugae Annand). 

This rapidly spreading insect kills trees of all sizes and age-classes within 4-15 years of 

infestation (Orwig et al. 2002). Hemlock has no apparent resistance to the adelgid; it rarely 

recovers from attack (Orwig et al. 2002), and there currently are no effective biological or 

chemical controls of the adelgid in forested ecosystems. The adelgid’s impact is further 

exacerbated by preemptive salvage logging, in which hemlock, which has modest economic 

value, is cut in anticipation of future infestation (Orwig et al. 2002). 

Hemlock could functionally disappear from eastern forests in the next several decades. 

Hemlock generally does not re-establish following adelgid-induced mortality (Fig. 1), but is 

replaced throughout its range by hardwood species including birch (Betula spp.), oaks (Quercus 

spp.) and maples (Acer spp.) (Orwig et al. 2002). In the southeastern United States when 

Rhododendron is absent, hemlock is replaced by yellow poplar (Liriodendron tulipifera L.) (J. 

Vose et al., unpublished). Decline of hemlock may lead to the local loss of its uniquely 

associated ants (Ellison et al. 2005) and birds (Tingley et al. 2002), cause regional 

homogenization of floral and faunal assemblages (Ellison et al. 2005), change soil ecosystem 

processes (Fig. 2; Jenkins et al. 1999) and alter hydrological regimes (Fig. 2).  
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The effects of adelgid-induced hemlock mortality on stream ecosystems will be 

extensive. For example, hemlock streams support significantly more taxa of aquatic invertebrates 

than paired mixed-hardwood stands, and nearly 10% of the taxa are strongly associated with the 

presence of hemlock (Snyder et al. 2002). Hemlock death may result in a rapid pulse of large 

amounts of wood that decays more slowly than coarse woody debris from hardwoods. Large 

hemlock logs in streams retain sediment and organic matter and create novel habitat types. In 

general, large hemlock logs are abundant in streams draining forest where hemlock is an 

important riparian species. Although logs from adelgid-killed hemlocks may persist in streams 

for decades to centuries, eventually the loss of hemlock will reduce in-stream wood, leading to a 

loss of in-stream sediment retention and productivity. 

Logging of hemlock initiates more rapid and greater ecosystem changes than the adelgid 

because of the abrupt vegetation and environmental changes, removal of wood of hemlock and 

other species, soil scarification, and presence of extensive slash left by logging operations 

(Kizlinski et al. 2002). Nitrogen availability and nitrification rates are significantly higher in cut 

forests than in adelgid-damaged ones, increasing the threat of nutrient losses and changing food 

availability in nearby aquatic systems (Kizlinski et al. 2002, C. Swan, unpublished).  

 

The shifting mosaic of whitebark pine 

 Whitebark pine forms extensive contiguous stands in high elevation forests of the Rocky 

Mountains of Wyoming, Montana, Idaho and Alberta, and smaller disjunct populations in eastern 

and southwestern Oregon, California, and Nevada. This dominant late-successional species (Fig. 

3) grows as dense krummholz at its upper elevational limit, whereas at lower elevations and less 

extreme sites, it grows in association with other conifers and its dominance is maintained by 
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periodic fire (Arno 2001). Whitebark pine has occupied its current range for ~8000 years. In 

western North America, extensive forests of whitebark pine, spruce (Picea spp.) and poplar 

(Populus spp.) developed after glacial retreat. As warming continued 8000 – 4000 years ago, 

whitebark pine became restricted to high elevation sites (MacDonald et al. 1989).  

Whitebark-pine cover at upper elevations retards snowmelt and modulates runoff and 

stream flows (Farnes 1990). At lower elevations, post-fire mid-successional whitebark pine 

stands provide shade and cool soil, facilitating establishment of diverse plant communities and 

associated cryptogams, invertebrates, and microbes. Its seeds serve as a major seasonal food 

source for bears, small mammals, and birds (Mattson et al. 2001).  

Throughout its range, whitebark pine is declining due to the combined effects of: an 

introduced pathogen, Cronartium ribicola J.C. Fischer; a native bark beetle, Dendroctonus 

ponderosae Hopkins; and fire-suppression policies (Kendall and Keane 2001). The pathogen C. 

ribicola, which causes white pine blister rust, was introduced from Eurasia into western North 

America in 1910 on imported white pine (Pinus strobus L.) seedlings planted near Vancouver, 

British Columbia (MacDonald and Hoff 2001). After its introduction, C. ribicola spread in a 

series of episodic pulses throughout western North America, and by the late 1930s it was 

established throughout the west, where it devastated pine stands (MacDonald and Hoff 2001). 

Fire exclusion further allowed replacement of whitebark pine by more shade tolerant species, and 

at lower elevations promoted growth of dense stands of lodgepole pine (Pinus contorta Dougl. 

ex. Loud.). In turn, lodgepole pine supports high populations of D. ponderosae beetles that 

disperse into adjacent whitebark pine stands when beetle populations irrupt. In a positive 

feedback loop, drought- and disease-stressed whitebark pines are further susceptible to beetle 

attack. 
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 Loss of whitebark pine alters watershed hydrology immediately as flashiness of streams 

increases, and changes dynamics of wildlife populations and succession over longer time scales. 

Cone crops of whitebark pine have declined due to interactions among white pine blister rust, 

fire exclusion, and bark beetles, and carrying capacities of species dependent on whitebark pine 

seeds have declined with the cone supply of this irreplaceable species (Mattson et al. 2001). 

 

The shrub that was a tree: the saga of American chestnut  

American chestnut was once a foundation species in eastern North American forests (Fig. 

4). Chestnut and oak were co-dominants in the southern Appalachians for nearly 4000 years and 

reached the northeast 2500-1500 years ago (Paillet 2002). Chestnut provided important resources 

for wildlife and humans, and locally exerted a strong influence on ecosystem structure and 

function (Paillet 2002). Chestnut blight, caused by the canker pathogen Cryphonectria parasitica 

(Murr.) Barr, was introduced from Asia in the late 19th century. The blight was first noted in 

New York in 1904, spread rapidly (~37 km/yr) across the range of chestnut, and within 50 years 

had converted this stately tree to a rarely-flowering understory shrub across ~3.6 million ha 

(Anagnostakis 1987).  

 Chestnut has a rapid growth rate and sprouting ability, wood with an extremely high 

tannin content, and leaves with a relatively low C:N ratio. Therefore, fundamental forest 

ecosystem processes including decomposition, nutrient cycling and productivity likely changed 

significantly following chestnut’s replacement by other species. Decomposition of chestnut 

wood is much slower than other co-occurring hardwoods and its high tannin concentrations 

could restrict the mobilization of nutrients in soils. Additionally, chestnut’s fast growth rate 

(Jacobs and Severeid 2004) might have resulted in rapid sequestration of carbon and nutrients.  
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Chestnut dominated a wide range of environments and its decline is thought to have 

altered both terrestrial and aquatic processes. There is evidence to suggest that the abundance of 

chestnut along riparian corridors of the southern Appalachians was due to production of 

allelochemicals that prevented establishment of what we now consider “typical” riparian shrub 

and tree species, including eastern hemlock and rhododendron (Vandermast et al. 2002). 

Ironically, therefore, the loss of one foundation species – American chestnut – may have 

facilitated the establishment of another – eastern hemlock – which itself is now threatened.  

In most forested headwater streams, autumn leaf inputs serve as the predominant energy 

base for aquatic ecosystems. Where chestnut was replaced by oak, relatively rapidly decaying 

chestnut leaves with high nutritional quality for aquatic macroinvertebrates were replaced by 

more slowly decaying oak leaves with lower nutritional quality (Smock and MacGregor 1988). 

As a consequence, leaf-processing and consumption rates would have declined, decreasing 

growth rates, and adult body mass in macroinvertebrate shredder communities. Many stream 

macroinvertebrates have life cycles closely synchronized to the dynamics of detrital decay, and 

this change in detrital quality undoubtedly affected the macroinvertebrate assemblage though 

there are no data to support this supposition. Further, slowly decomposing chestnut wood persists 

for decades in stream channels, altering channel structure and providing habitat for fish and 

invertebrates. For example, in an Appalachian headwater stream sampled in the late 1990s, 

Wallace et al. (2001) found that 24% of the large (>10 cm diameter) woody debris still consisted 

of American chestnut that had died over 50 years earlier.  
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Functional loss versus total loss  217 
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As foundation species decline, their control of ecosystem structure and processes may 

wane long before the species itself disappears completely. For example, as hemlock stands 

decline, tree death opens the canopy, drastically altering the understory microclimate and causing 

the loss of the unique habitat hemlock creates. Similarly, shrubby chestnut contributes little to 

leaf area, wood production, or nuts, so that while it is still present in many forests, the American 

chestnut tree is functionally extinct.  

The potential effects on ecosystem function and community composition caused by the 

loss of foundation species can be either exacerbated or ameliorated by patterns of decline in time 

and space. For example, logging and diseases such as chestnut blight or white pine blister rust 

have resulted in rapid loss of foundation species over broad areas. This contrasts with the slow 

death of individuals over decades or partial loss of a species through removal or death of only 

one age or size class, as in beech bark disease (Griffin et al. 2003). Similarly, whether the spatial 

pattern of individual deaths occurs in mosaic fashion or as an advancing wave of death 

influences the timing and magnitude of loss of a foundation species (Holdenreider et al. 2004), 

and perhaps the ultimate outcome. Forest fragmentation often occurs in mosaic patterns across 

the landscape (e.g., Halpern et al. 2005), whereas epidemiological models of plant pathogens or 

species invasions suggest that changes in forest structure occur in wave-like patterns (Johnson et 

al. 2004). Such studies suggest that where complex spatial and temporal patterns of species loss 

occur, the effects at any particular location are unlikely to be a linear function of area altered or 

changes in species’ dominance. Indeed, threshold responses, including transitions to new types 

of ecosystems, should be expected where key dependent variables, such as mast production, 
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herbivore or detritivore abundance, or adult survival, result from a complex web of indirect 

relationships (e.g., Ebenman and Jonsson in press). 

 

Responding to the loss of foundation species 

 Because foundation tree species tend to be common, abundant, and large our responses to 

their loss often come late and are conducted at inappropriate scales. For example, the on-going 

attempt to recreate the American chestnut by back-crossing the few remaining fertile individuals 

with resistant species from Europe and Asia holds out the promise of specimen trees in suburban 

lawns but is unlikely to reforest ca. 4 million hectares with hybrid chestnuts. Similarly, chemical 

control of the hemlock woolly adelgid requires injecting trees annually and can only target 

isolated single trees or small groves. Biological control of the adelgid using non-native, 

generalist, predaceous beetles is being explored with uneven regard for the long history of 

unexpected impacts attendant to the importation of exotic insects (e.g., Howarth 1991, Boettner 

et al. 2000). Although several million beetles are released every year, there have been no 

systematic attempts to determine whether self-sustaining populations have become established or 

how effective they are at actually controlling the adelgid in the field. Overall, we would be much 

more likely to conserve foundation species and the systems they create if we set aside very large 

reserves of intact forests and adopted techniques that preserve ecosystem integrity in those forest 

stands that we do manage (Foster et al. 2005). 

 

Conclusions 

There is no sign that the currently increasing rates of resource extraction, climate change, 

or global movement of pests and pathogens will slow any time soon. Foundation species have 
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disappeared before and they will continue to disappear. Despite nearly half a century of research 

on foundation species (Panel 1), our understanding of the consequences of their loss is based on 

a small number of case studies, as we usually identify foundation species only after they have 

declined dramatically. Our examples illustrate that foundation tree species can control both 

terrestrial forest processes and the dynamics of aquatic systems within their watersheds. Detailed 

information on the importance of foundation species to key ecosystem processes are scarce, 

however. Likewise, the impact on water quality from the loss of foundation species could be 

significant and merits further study.  

Long-term monitoring can reveal how losses of foundation species alter successional 

rates and trajectories, leading in some cases to novel forest types (such as black birch forests in 

New England) with unexpected dynamics. But monitoring is not enough. Ecologists have long 

appreciated the complex nature of interactions among species, and we encourage direct, 

experimental approaches that use current foundational species’ losses as an opportunity to 

determine how the removal of a single species can have immediate and profound effects on other 

species and ecosystem processes.  

The dynamics of communities and ecosystems shaped by foundation species are 

dominated by a small number of strong interactions (Fig. 2). Such systems are relatively fragile 

and susceptible to switching between alternative stable states following even small perturbations 

(Dudgeon and Petraitis 2005). At the same time that many forested systems are losing their 

foundation species, they are simultaneously and synergistically threatened by climate change, 

atmospheric deposition, drought, and invasion of exotic species, all of which may increase their 

overall fragility. Temperate-zone forests, such as those we highlighted here, have few tree 

species relative to the species-rich tropical forests that garner much attention from ecologists and 
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conservation biologists. When there are only one or two foundation species in a forest, there is 

little functional redundancy in many important respects, and their loss is likely to lead to rapid, 

possibly irreversible, shifts in biological diversity and system-wide changes in structure and 

function (Ebenman and Jonsson in press). Regrettably, the lack of detailed knowledge of the 

natural history of most species in most forests, and the abandonment of courses and curricula in 

natural history (Dayton 2003) will leave us unaware of the collapse of the intricate webs of 

interactions and processes that are lost when foundation species disappear. 

Foundation species provide fundamental structure to a system, and thus they are by 

definition irreplaceable. For example, without hemlock, hemlock forests cease to exist, and no 

other native conifer possesses the same suite of structural and functional characteristics that 

simultaneously define its position in the system and control system-wide dynamics and 

processes. Many recognized foundation tree species (text and Panel 2) that have been identified 

sare conifers, but it remains an open question whether conifers are disproportionately represented 

among foundation species. We need new research tools, models, and metrics that will allow us to 

identify foundation species a priori and to anticipate the cascade of immediate, short-term, and 

long-term changes in ecosystem structure and function that follow their loss. Community 

viability analysis (Ebenman and Jonsson in press) may provide some of these tools, but its utility 

awaits empirical evaluation. Ongoing declines of many foundation species (Panel 2) provide 

timely, though unfortunate, opportunities to develop such tools and models.  
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Panel 1 – The many definitions of foundation species.  434 
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Following nomenclatural priority, we adopt Dayton’s (1972) terminology and general definition 

of a foundation species: a single species that defines much of the structure of a community by 

creating locally stable conditions for other species, and by modulating and stabilizing 

fundamental ecosystem processes. 

Subsequent authors, working in different habitats and apparently unaware of historical 

antecedents, have suggested terms with some or all of the attributes of foundation species, 

including: 

Core species (Hanski 1982) are locally abundant and regionally common; associated satellite 

species are sparse and rare. An associated metapopulation model (the core-satellite hypothesis) 

explains relationships between a species’ local abundance and its regional distribution. 

Dominant species (Grime 1984) competitively exclude subordinate species by garnering a 

disproportionate share of resources and contributing most to productivity.  

Keystone predators (Paine 1966) preferentially consume dominant competitors and enhance 

local biodiversity by preventing exclusion of weaker competitors. Holling’s (1992) extended 

keystone hypothesis posits that all terrestrial ecosystems are controlled and organized by a small 

set of keystone species.  

Structural species (Huston 1994) create physical structures of environments, produce variability 

in physical conditions, provide resources, and create habitat for interstitial species.  
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Ecosystem engineers (Jones et al. 1994) cause physical state changes in biotic or abiotic 

materials and modulate availability of resources to other species. Class 5 autogenic ecosystem 

engineers are directly analogous to Dayton’s foundation species. 
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Panel 2. Additional examples of foundation species from forests around the world. 457 
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Bald cypress, Taxodium distichum (L.) Richard, dominates deepwater swamps of southeastern 

North America (Sharitz and Mitsch 1993). Its presence and density affect the water table and 

flow of sediment and nutrients, and control structure and composition of associated plant and 

animal communities (Sharitz and Mitsch 1993). Intensive logging and removal of bald cypress 

dramatically alters hydrology and nutrient cycling, reduces primary productivity, and increases 

sedimentation (Sun et al. 2001).  

Douglas fir, Pseudotsuga menziesii (Mirbel) Franco, dominates young and old-growth forests 

at low and mid-elevations west of the Cascade Range and at higher elevations in the interior of 

the Pacific northwest of North America. Live trees, snags, and fallen logs provide unique habitat 

for wildlife including endangered and rare species such as the spotted owl. The evergreen foliage 

controls light levels, microclimate, and gas exchange from the forest floor to the canopy (Parker 

et al. 2004). Logging alters C and N cycling, wildlife abundance, and plant successional 

dynamics (Halpern et al. 2005). Unlike the other foundation species discussed in this paper, 

Douglas fir is not currently threatened, as it is strongly favored by current forest management 

practices in the Pacific Northwest. However, many old-growth stands in the Pacific Northwest 

have been lost to logging over the past decades.  High-intensity fires resulting from long-term 

fire suppression practices, introduced pests or changes in the ecological dynamics of native pests, 

or changes in forest management that pose mortality risks to old-growth Douglas fir stands could 

have important ecological impacts in the future. 

Fraser fir, Abies fraseri (Pursh) Poiret, is a locally abundant endemic species that occurs in six 

discrete high-altitude areas in the southern Appalachians (Hollingsworth and Hain 1991). There, 
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Fraser fir defines high-elevation spruce-fir communities, with tightly associated animal and plant 

species. Fraser fir has been declining since the balsam woolly adelgid Adelges piceae 

(Ratzeburg) was introduced in the 1930s (Hollingsworth and Hain 1991). Its loss increases 

susceptibility of its co-dominant, red spruce (Picea rubens Sarg.), to windthrow, and both 

species are suffering additional effects of climate warming and air pollution (Hamburg and 

Cogbill 1988).  

Jarrah, is a unique Australian forest type comprised mainly of Eucalyptus marginata Donn ex 

Sm. It experiences mass collapse and sudden death following waterlogging, which increases 

infection of jarrah roots by zoospores of Phytophthora cinnamomi (Davison and Tay 1987), a 

soil-born pathogenic fungus introduced into Western Australia in 1921 that affects ~2000 of the 

9000 extant plant species there (Wills 1992). Following invasion by P. cinnamomi, richness of 

woody perennial species in the jarrah understory declines significantly, whereas richness of 

monocots, herbaceous perennials, annuals and geophytes are largely unaffected (Wills and 

Keighery 1994). 

Port-Orford cedar, Chamaecyparis lawsoniana (A. Murray) Parl, endemic to southwestern 

Oregon and northern California, grows on ultramafic and non-ultramafic soils, in riparian and 

upland sites, and occurs in the most diverse plant associations in the region. On ultramafic soils, 

Port-Orford cedar often is the only riparian tree species. It is a foundation species for both 

terrestrial and aquatic habitats: it recycles calcium to surface soils, provides shade, and stabilizes 

soil and stream banks (Hansen et al. 2000), and its highly rot-resistant wood provides habitat 

heterogeneity and alters hydrology. The non-native, water-dispersed, and generally lethal root 

pathogen Phytophthora lateralis Tucker & Milbrath has spread into virtually all natural forest 

stands from nursery plants infected in the early 1920s (Hansen et al. 2000). 
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Mangroves, Rhizophora spp., form dense, often monospecific stands in estuarine and coastal 

forests throughout the tropics; these forests have some of the highest reported net primary 

productivity of any ecosystem on the planet (Ellison and Farnsworth 2001). Removal of 

mangroves leads to rapid build up of acid sulfides in the soil, increased shoreline erosion and 

sedimentation onto offshore coral reefs, and collapse of intertidal food webs and inshore fisheries 

(Ellison and Farnsworth 2001). More than 2% of mangrove forests are lost annually, as forests 

are cut for fuel, coastal development, and wood fiber used to produce rayon. 
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Figure 1. An old-growth eastern hemlock (Tsuga canadensis) stand (left), a stand declining 

following 10 years of infestation by hemlock woolly adelgid (Adelges tsugae) (center and 

inset), and dense regeneration of black birch (Betula lenta) saplings on a site formerly 

dominated by eastern hemlock in southern Connecticut (right). Nearly all hemlock trees 

in this 150-hectacre in southern Connecticut forest were killed in the mid-1990s by the 

hemlock woolly adelgid. Photographs courtesy of MD Abrams (Pennsylvania State 

University, DA Orwig (Harvard Forest) and D Lee (Florida International University). 

Figure 2. Conceptual model of shifts in terrestrial and aquatic ecosystem processes following 

loss of eastern hemlock from northern (left) and southern (center) forests and conversion 

to hardwood-dominated stands (right).  

Figure 3. High-elevation stands of whitebark pine (Pinus albicaulis). This species is transformed 

from healthy stands (left) to dead stands (right) through the interaction of fire 

suppression, the introduced pathogen Cronartium ribicola that causes white pine blister 

rust (inset), and the native bark beetle Dendroctonus ponderosae. Photographs courtesy 

of S van de Gevel and E Larson (University of Tennessee). 

Figure 4. American chestnut (left: Chestnut timber, Great Smoky Mountains of Western North 

Carolina, photographed by Sidney V. Streator ca. 1910), a foundation species that was 

transformed in the mid-20th century to an understory shrub (right: small shrub in center) 

by the introduced pathogen Cryphonectria parasitica that causes chestnut blight (center: 

chestnut in the Blue Ridge Plateau killed by the blight, photographed by Bluford W. Muir 

1946). Archival photographs courtesy of the Forest History Society, Durham, NC; 

chestnut understory photograph courtesy of DA Orwig (Harvard Forest). 
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