LONG-TERM CO₂ ENRICHMENT OF A FOREST ECOSYSTEM: IMPLICATIONS FOR FOREST REGENERATION AND SUCCESSION

JACQUELINE E. MOHAN,1,2,3* JAMES S. CLARK,1,4 AND WILLIAM H. SCHLESINGER1,4

1 Duke University, Graduate Program in Ecology, and Department of Biology, Durham, North Carolina 27708 USA
2 Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, Massachusetts 02138 USA
3 The Ecosystem Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543 USA
4 Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina 27708 USA

Abstract. The composition and successional status of a forest affect carbon storage and net ecosystem productivity, yet it remains unclear whether elevated atmospheric carbon dioxide (CO₂) will impact rates and trajectories of forest succession. We examined how CO₂ enrichment (+200 μL CO₂/L air differential) affects forest succession through growth and survivorship of tree seedlings, as part of the Duke Forest free-air CO₂ enrichment (FACE) experiment in North Carolina, USA. We planted 2352 seedlings of 14 species in the low light forest understory and determined effects of elevated CO₂ on individual plant growth, survival, and total sample biomass accumulation, an integrator of plant growth and survivorship over time, for six years. We used a hierarchical Bayes framework to accommodate the uncertainty associated with the availability of light and the variability in growth among individual plants.

We found that most species did not exhibit strong responses to CO₂. Ulmus alata (+21%), Quercus alba (+9.5%), and nitrogen-fixing Robinia pseudoacacia (+230%) exhibited greater mean annual relative growth rates under elevated CO₂ than under ambient conditions. The effects of CO₂ were small relative to variability within populations; however, some species grew better under low light conditions when exposed to elevated CO₂ than they did under ambient conditions. These species include shade-intolerant Liriodendron tulipifera and Liquidambar styraciflua, intermediate-tolerant Quercus velutina, and shade-tolerant Acer barbatum, A. rubrum, Prunus serotina, Ulmus alata, and Cercis canadensis. Contrary to our expectation, shade-intolerant trees did not survive better with CO₂ enrichment, and population-scale responses to CO₂ were influenced by survival probabilities in low light. CO₂ enrichment did not increase rates of sample biomass accumulation for most species, but it did stimulate biomass growth of shade-tolerant taxa, particularly Acer barbatum and Ulmus alata. Our data suggest a small CO₂ fertilization effect on tree productivity, and the possibility of reduced carbon accumulation rates relative to today’s forests due to changes in species composition.

Key words: Bayesian analysis; carbon dioxide (CO₂) enrichment; forest succession; global change; hierarchical Bayes.

INTRODUCTION

Understanding how successional forests respond to rising atmospheric carbon dioxide (CO₂) concentrations is critical for predicting future forest composition, diversity, and productivity. Owing to fossil fuel emissions and tropical deforestation, the current concentration of ~380 μL/L (CO₂/air) is expected to increase to 580 μL/L by the middle of this century (Prentice et al. 2001), representing the highest CO₂ level in the past 15 × 10⁶ years (Petit et al. 1999, Pearson and Palmer 2000). Concurrently, the proportion of the globe supporting successional ecosystems is increasing due to human land use and disturbance (Bazzaz 1996, Vitousek et al. 1997, Imhoff et al. 2004). Forests dominated by productive, early successional trees are typically net carbon sinks (Goulden et al. 1996, Barford et al. 2001, Deckmyn et al. 2004, Finzi et al. 2004). Such forests exhibit maximum rates of net ecosystem productivity (NEP), representing sequestered carbon (Peet 1992, Ryan et al. 1997, 2004, Schlesinger 1997, Caspersen et al. 2000, Wardle et al. 2004). Forests of the eastern United States in particular are accumulating biomass as they recover from 19th and 20th century land clearance (Delcourt and Harris 1980, Dixon et al. 1994, Hurr et al. 2002, Foster et al. 2004), and carbon sequestration by such forests is an important component of the global carbon cycle (Ciais et al. 1995, Caspersen et al. 2000, Pacala et al. 2001, Houghton 2003, Beedlow et al. 2004, Cao et al. 2004). Although its impacts on forests are unknown, elevated CO₂ accelerated successional change toward dominance by later successional taxa in a grassland community (Polley et al. 2003). Projected feedbacks to the global carbon budget may differ if elevated CO₂ preferentially benefits early or late successional tree species, potentially impacting
CO₂ ENRICHMENT OF A FOREST ECOSYSTEM

June 2007

The literature is equivocal regarding the relative success of successional functional groups under elevated CO₂. In glasshouse and chamber studies, high CO₂ has been observed to benefit both early (Brown and Higginbotham 1986, Hättenschwiler and Körner 1996, Hoddinott and Scott 1996) and late (Bazzaz and Miao 1993, Kubiske and Pregitzer 1996, 1997, Kinney and Lindroth 1997, Hättenschwiler and Körner 2000, Kerstiens 2001, Khurana and Singh 2004) successional forest species. Early-successional, shade-intolerant plants often have increased quantum yields and decreased light compensation points (the light level at which plants have zero net carbon assimilation and growth, and below which negative growth rates ultimately lead to death) when grown under high CO₂ conditions (Ehleringer and Björkman 1977, Chen et al. 1999), and have spread into shadier experimental microsites when given supplemental CO₂ (Hättenschwiler and Körner 1996). Early successional species are typically faster growing than late successional species (Bazzaz and Pickett 1980, Pacala et al. 1996), and species with intrinsically high growth rates under ambient CO₂ conditions often obtain greater CO₂ growth stimulation than slow-growing species (Poorter 1993, 1998, Ackerly and Bazzaz 1995). Elevated atmospheric CO₂ is a potential cause of the recent increase in growth of intrinsically fast-growing Amazonian tree species (Laurance et al. 2004). Other studies suggest that later successional, shade-tolerant trees tend to preferentially benefit from CO₂ enrichment (Bazzaz and Miao 1993, Kubiske and Pregitzer 1996, 1997, Hättenschwiler and Körner 2000, Kerstiens 2001). Model results of Lloyd and Farquhar (1996) predict slow-growing species preferentially benefit from elevated CO₂. The overall impact of rising CO₂ for enhancing temperate forest productivity has been questioned (Caspersen et al. 2000). The potential impact of elevated CO₂ on forest regeneration and succession in the face of natural environmental variability remains unknown.

Different responses to elevated CO₂ have been observed among species within the same functional group (Bazzaz and Miao 1993, Reid and Strain 1994, Hättenschwiler and Körner 1996, 2000, Hättenschwiler 2001, Bergh et al. 2003, Polley et al. 2003, Niklaus and Körner 2004) and even among groups and individuals of the same tree species (DeLucia et al. 1994, Wayne and Bazzaz 1997, Wang et al. 2000, Mohan et al. 2004). These disparate findings may result from unrealistic resource levels and community interactions that have not been adequately reproduced in artificial experimental settings (Ackerly and Bazzaz 1995), from individualistic species responses (Hättenschwiler and Körner 2000, Belote et al. 2004), or from genetic variation within a species (Wayne and Bazzaz 1997, Wang et al. 2000, Mohan et al. 2004). Thus studies using a limited number of trees growing under artificial conditions may be misleading. Clearly, studies are needed from intact forest understories, where CO₂ can be manipulated (Field et al. 1992, Nowak et al. 2004). Such studies must allow for the full variability in resource levels (i.e., light and CO₂) and in the populations that respond to them (Clark et al. 2003).

Here, we determine the impacts of elevated atmospheric CO₂ on the growth and survivorship of individuals and on biomass accumulation rates of temperate tree species. We initiated experiments to test how functional groups, species, and individual trees respond to elevated CO₂ in the Duke Forest free-air CO₂ enrichment (FACE) facility in North Carolina, USA. CO₂ fumigation of this intact forest provides an opportunity to examine CO₂ effects on forest understory tree dynamics and successional processes in the face of natural environmental variability, including one hurricane (which occurred before the advent of the present study), several severe winter ice storms (particularly in 2002), and a long-term drought from 1998 to 2002. Secondary succession in Duke Forest is well-documented under ambient CO₂ conditions (Oosting 1942, Keever 1950, Christensen and Peet 1981, 1984). Over 20 years in age, the experimental forest is entering the “thinning phase” during which competition for light and soil resources is intense (Christensen and Peet 1984, Peet 1992, Oren et al. 2001). Typical of forest understory environments (Canham et al. 1994, Kobe et al. 1995, Kobe and Coates 1997, Clark et al. 2003) the FACE understory is shady, with light availability in year 2000, as determined by hemispherical photography, averaging 2.8% full sunlight. Because elevated CO₂ may affect the outcome of competition for non-CO₂ resources (Bazzaz and McConnaughay 1992, Oren et al. 2001, Niklaus and Körner 2004, Nowak et al. 2004), this forest provides an ideal setting to assess potential CO₂ impacts on temperate forest successional dynamics.

Methods

Site description and design

Forests now cover much of the southeastern United States on lands that were abandoned from agriculture early in the last century. In 1996, three ambient (~365 μL CO₂/L air) and three elevated (~200 μL/L differential, for a concentration of ~565 μL CO₂/L) plots, each 707 m² in area, were established in a 13-yr-old unmanaged loblolly pine stand at the Duke Forest FACE site, one of the few facilities to test CO₂ effects on an intact forest system (Hendrey et al. 1999). CO₂ treatments commenced September 1996. With a range extending from Delaware to Texas, Pinus taeda L. (loblolly pine) is one of the most common tree species in the southeastern United States, particularly on the Piedmont and Coastal Plain physiographic provinces (Martin et al. 1993). It plays a prominent role in secondary succession on abandoned land, being among the first woody species to invade (Oosting 1942, Keever...
1950, Christensen and Peet 1981), and dense stands persist for several decades before being replaced by mixed hardwood forests (Oosting 1942, Christensen and Peet 1984). *Pinus taeda* is a major commercial species in the southeastern United States, where it dominates ~11.7 × 10⁶ hectares (Burns and Honkala 1990, Harlow et al. 1991).

The section of the Duke Forest that forms the FACE experiment was farmed a century ago, and the current plantation was established after a regenerating forest was clear cut. This forest contains a subcanopy of *Liquidambar styraciflua*, *Liriodendron tulipifera*, *Ulmus americana*, and *Acer platanoides*, with the exceptions of *Quercus velutina* and *Quercus rubra*, which are widespread in the Piedmont of North Carolina (35°9′N 79°0′W).

To determine the effects of atmospheric CO₂ on understory plants during the summer of 1997 we located eight subplots (1.44 m² each) in the periphery of each of the 48 FACE plots (N = 48). To minimize the destructive impact of white-tailed deer (*Odocoileus virginianus*) on the understory vegetation, we surrounded the subplots with 0.9-m tall herbivore exclusions constructed from 2.54-cm wire mesh and fastened to the ground with 13-cm stainless steel ground staples (Forestry Suppliers, Jackson, Mississippi, USA). Note that during this study, mean global CO₂ rose from <360 µL/L air to ~380 µL/L air; but for the sake of simplicity all ambient CO₂ levels in the text and figures of this paper are denoted by 365 µL/L and elevated concentrations by 565 µL/L.

During the autumn of 1997, seeds from 14 tree species (Table 1) were obtained from several maternal trees per species and stratified at 4°C. These species typically co-occur in Piedmont forests of the southeastern United States (Martin et al. 1993). Seeds of *Prunus serotina* were scarified with sand paper and *Cercis canadensis* seeds were soaked overnight in a 10% solution of KOH. Seeds were planted in germination trays in March 1998 and watered twice daily. They were fertilized daily for 30 days with half-strength Hoagland’s fertilizer (Downs and Hellmers 1978). In April, seedlings were moved outside under filtered light conditions and planted individually into 226-cm³ “cone-tainers” (Stuewe and Sons, Corvallis, Oregon, USA) filled with Metro-Mix 200 (vermiculite, sphagnum, and perlite; The Scotts Company, Marysville, Ohio, USA), a non-nutritive planting medium. The seedlings were watered once a day with tap water and during natural precipitation events and were no longer supplied with fertilizer.

In October 1998, 49 seedlings representing the 14 tree species were planted into each of the 48 caged subplots (total number of seedlings = 2352; Table 1). For each species, subplots contained equal numbers of individuals, with the exceptions of *Acer barbatum* and *Quercus velutina* that had relatively low germination rates. Within a species, individual seedlings were randomly assigned to each subplot. Within each subplot, the location of each individual on a 7 × 7 plant grid was randomly determined. Seedlings were planted during or soon after rain events over a five-day period. To determine transplant success and initial plant size, we measured survivorship, height, and basal diameter (diameter at 5-cm height) of the seedlings two months after transplanting (December 1998) and found post-transplantation survivorship to be high (93–100% per species and CO₂ treatment). Non-planted vegetation was removed from each plot during annual weeding. Dormant season survivorship and size censuses were repeated annually through 2003.

The supplemental CO₂ source used in the elevated plots is derived from the combustion of natural gas, and contains a highly depleted δ¹³C signature of ~−43‰. The CO₂ concentrations in the ambient and fumigated plots are monitored down to only about 1 m from the soil surface, which was higher than the initial heights of the tree seedlings by approximately an order of magnitude.

Table 1. The 14 tree species planted in subplots at the Duke Forest FACE experiment.

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Shade tolerance</th>
<th>No. trees per subplot</th>
<th>Total no. trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer barbatum</td>
<td>southern sugar maple</td>
<td>tolerant</td>
<td>1</td>
<td>359</td>
</tr>
<tr>
<td>Acer rubrum</td>
<td>red maple</td>
<td>tolerant</td>
<td>5</td>
<td>240</td>
</tr>
<tr>
<td>Cercis canadensis</td>
<td>eastern redbud</td>
<td>tolerant</td>
<td>4</td>
<td>192</td>
</tr>
<tr>
<td>Liquidambar styraciflua</td>
<td>sweetgum</td>
<td>intolerant</td>
<td>5</td>
<td>240</td>
</tr>
<tr>
<td>Liriodendron tulipifera</td>
<td>tulip poplar</td>
<td>intolerant</td>
<td>4</td>
<td>192</td>
</tr>
<tr>
<td>Pinus echinata</td>
<td>shortleaf pine</td>
<td>intolerant</td>
<td>3</td>
<td>144</td>
</tr>
<tr>
<td>Pinus taeda</td>
<td>loblolly pine</td>
<td>intolerant</td>
<td>3</td>
<td>144</td>
</tr>
<tr>
<td>Prunus serotina</td>
<td>black cherry</td>
<td>tolerant</td>
<td>3</td>
<td>144</td>
</tr>
<tr>
<td>Quercus alba</td>
<td>white oak</td>
<td>intermediate</td>
<td>3</td>
<td>144</td>
</tr>
<tr>
<td>Quercus phellos</td>
<td>willow oak</td>
<td>intolerant</td>
<td>3</td>
<td>144</td>
</tr>
<tr>
<td>Quercus rubra</td>
<td>red oak</td>
<td>intermediate</td>
<td>5</td>
<td>240</td>
</tr>
<tr>
<td>Quercus velutina</td>
<td>black oak</td>
<td>intermediate</td>
<td>2 or 3</td>
<td>109</td>
</tr>
<tr>
<td>Robinia pseudoacacia</td>
<td>black locust</td>
<td>intolerant</td>
<td>3</td>
<td>144</td>
</tr>
<tr>
<td>Ulmus alata</td>
<td>winged elm</td>
<td>tolerant</td>
<td>5</td>
<td>240</td>
</tr>
</tbody>
</table>

† Due to a low germination rate only 35 *Acer barbatum* seedlings were planted; thus, in 13 of the 48 plots, *A. barbatum* was replaced with an individual of another species.
To assess the adequacy and accuracy of the CO2 fumigation of the understory stratum, we harvested current-year leaves of Lonicera japonica (Japanese honeysuckle) at ≤15 cm from the soil surface in each subplot in July 1997. Globally, C3 plants are depleted in 13C relative to the CO2 of the atmosphere due to photosynthetic fractionation, and have foliar δ13C values around −28% (O’Leary 1988). Our ambient-plot plants exhibited a signature of −33% (Fig. 1). This depletion under Duke FACE ambient conditions exceeds the average δ13C signature of C3 plants (−28%) due to soil respiration, which releases CO2 with a depleted δ13C signature from the soil surface where these plants occurred (Andrews et al. 1999). Using the difference between the foliar δ13C signatures in ambient and fumigated plots and the −8% of the ambient atmosphere in a mass-balance equation (see Appendix A for details of the equation), we calculated a CO2 concentration of 580 μL/L in the understory of fumigated plots. Given the low coefficients of variation of the ambient and elevated foliar δ13C signatures (0.85% and 2.09%, respectively; Fig. 1), these δ13C values indicate that CO2 levels within the elevated plots were reasonably well controlled.

We used hemispherical canopy photographs obtained during uniform sky conditions (cloudy days, early morning, or late afternoon) to estimate understory light conditions at each subplot. Photos were taken in late summer during maximum canopy leaf area from a height of 1 m above each seedling plot. Images were obtained on 400-speed color slide film using a Nikon FM2 camera with a Sigma 8-mm 180° fish-eye lens and leveling tripod. Digitally scanned images were analyzed with the HemiView Canopy Analysis Software (Version 2.1, Delta-T Devices, Cambridge, UK). Photo analysis involves a user-defined threshold intensity for each photo that determines whether pixels are classified as open (sky) or obscured (canopy). The Global Site Factor (GSF) represents the proportion of full sunlight reaching the forest understory, and is used as the “light availability” term in the Bayesian analyses. The GSF combines direct and diffuse radiation but does not account for backscatter within the canopy (Rich 1989, Clark et al. 2003).

In 1998, in order to examine individual growth responses to a range of light conditions, we established four locations in the pine forest surrounding the FACE plots (two to the north and two to the south of the FACE facility) where we manually cleared 20-m diameter canopy gaps. In addition, we used a fifth 10-m diameter gap that was manually cleared in the previous year near the center of the FACE facility. In the center of each of the five gaps we positioned four 1.44-m² caged subplots along an east-west transect. In October 1998 we planted, enclosed, and monitored each subplot in the same manner as with the subplots in the FACE plots, with the exception that we had no Acer barbatum or Quercus velutina seedlings. We took hemispherical photos in 1998 and 1999, but due to the inherently fast growth of these trees under the high-light conditions, we harvested all aboveground biomass from the four larger gaps in November 1999. Many of the harvested individuals produced coppice sprouts the following year, but these were not included in the present study. Individuals in the fifth smaller, darker gap had slower growth rates and were censused through autumn 2001. Data from individuals growing in the gap environments were used in the Bayesian analyses of growth vs. light and CO2, but not in the classical growth analyses in order to focus on CO2 effects in the forest understory.

Analysis of plant growth

The mean annual relative growth rate (RGR) of seedlings was calculated based on allometric estimates of individual plant aboveground biomass \(b_{ijk} \) (Appendix B)

\[
RGR_{ijk,t+1} = \ln b_{ijk,t+1} - \ln b_{ijk,t}
\]

where \(b \) is the biomass of seedling \(i \) in subplot \(j \) of plot \(k \) in year \(t \). Plots were then averaged to calculate the CO2

![Fig. 1. Mean δ13C from foliage samples of Lonicera japonica growing in the FACE understory. Three of the plots are maintained at ambient CO2 concentrations (~365 μL CO2/L air), and three of the plots are maintained at elevated CO2 concentrations (~565 μL/L). Within each plot, eight plants growing in the position of proposed subplots (“plot periphery”) and 16 plants from random locations within each plot (“whole plot”) were used to test the adequacy of the CO2 control. Bars represent plot means (N = 3), and error bars denote ±SE. Elevated CO2 means (565 μL/L air) are different from ambient CO2 means (365 μL/L; P < 0.004), but there is no effect of position within each plot. The supplemental CO2 has a δ13C signature of −43 ± 1%. The depletion under ambient conditions, which exceeds the average −28% δ13C signature of C3 plants, is due to soil respiration that increases CO2 concentrations and depletes δ13C signatures at the soil surface, where these plants occurred (Andrews et al. 1999).
Our hierarchical Bayes framework allowed us to accommodate (1) the uncertainty in light available to seedlings, and (2) the random variability among seedlings within a species in how they respond to light and CO2. The basic process model describes how plant height or biomass changes from year to year, depending on available light and atmospheric CO2 concentration. We build on the model used by Clark et al. (2003), allowing that light availability is imprecisely known and that each plant within a given group may differ in its response (referred to as "random individual effects" within a population). The model can be viewed as a nonlinear mixed model that is hierarchical in terms of growth response to light. We allow for fixed CO2 effects only, because each individual is subjected to only CO2 level, and there are only two CO2 treatments.

Let \(y_{ijkt} \) be the annual height increment (cm/yr) or biomass increment (g/yr) of seedling \(i \) in subplot \(j \) of plot \(k \) in year \(t \). There is a mean response \(\mu_{ijkt} \) and normally distributed error \(e_{ijkt} \):

\[
y_{ijkt} = \mu_{ijkt} + e_{ijkt}.
\]

The mean response is a saturating function of light availability \(l_{jk} \):

\[
\mu_{ijkt} = g_{ijk} \left(\frac{l_{jk} - l_{350}}{l_{565} + \theta} \right).
\]

There is an asymptotic growth rate \(g_{ijk} \), a minimum light requirement or light compensation point for non-negative growth \(l_1 \) for ambient \(l_{565} \) and elevated \(l_{350} \) CO2 treatments, and a half-saturation constant \(\theta \) that describes the light level at which growth is at half the maximum rate.

We fit models representing the four combinations of CO2 and individual random effects, and used predictive loss (Gelfand and Ghosh 1998) as a model selection tool. The four combinations are: (A) neither CO2 nor random individual effects, (B) random individual effects, (C) CO2 effects, and (D) both CO2 and random individual effects. The full model D is:

\[
p \left[g, l, l_{350}, l_{565}, \sigma^2, \theta, \alpha, \nu_m | y, f^{\text{obs}}, \epsilon \right] \propto \prod_{k=1}^{6} \prod_{m=1}^{n} \prod_{i=1}^{6} N_{y_{ijkt}}(y_{ijkt} | \mu_{ijkt}, \sigma^2 I_{ijkt}) \times \prod_{k=1}^{6} \prod_{j=1}^{m} \prod_{t=1}^{n} \text{Unif}(l_{jk} | a_{jk}, b_{jk}) \times \prod_{k=1}^{6} \prod_{j=1}^{m} \prod_{t=1}^{n} \text{LN}[g_{ijk} | \ln(\alpha), \nu_m] \text{Unif}(l_{350} | a_t, b_t) \times \text{Unif}(l_{350} | a_t, b_t) \text{Unif}(\alpha | a_0, b_0) \times \text{IG}(\sigma^2 | a_0, b_0) \text{IG}(\nu_m | a_t, b_t)
\]

where \(f^{\text{obs}} \) is the observed light value from the hemispherical photo analysis and \(\epsilon \) is the CO2 concentration. For a complete description of the hierarchical Bayesian analysis, see Appendix C. For this study, we focus our attention on \(g \), the set of maximum growth rates \(g_{ijk} \) that vary among individuals; \(l_1 \), the “light compensation point” (more precisely, the estimated light level where growth rate is zero for this model of plant growth); and \(\theta \), the light level at which growth is half of maximum. Models A and C have a single parameter \(g \) for each species (because they do not contain random individual effects), and so do not include priors \(\alpha \) and \(\nu_m \). Models B and D have a single parameter value \(l = l_{565} = l_{350} \) (because CO2 effects are not taken into account in these models). When the hierarchical model (B) and the hierarchical plus CO2 model (D) have similar \(d_m \) values (this was the case for Cercis and Pinus echinata), we show only the parameter estimates from model D (for both of these species, models B and D had similar predictive loss, \(d_m \) values, which were an order of magnitude less than the \(d_m \) values for models A and C).

Note that \(l_{350} \), \(l_{565} \), and \(\theta \) estimates for Pinus species are low, in part due to the high mortality of these trees at all light levels. Pines have a disproportionately large number of observations from the first year (when they were still alive), and thus a more even distribution of light values than species that tended to die sooner at lower light levels but persisted over the six years of the study.

Survival

Effects on survival were estimated using the Cox proportional hazard model. The mortality risk for an individual in year \(t \) is the product of base hazard \(h_0 \) and covariate effects

\[
h_{ijkt} = h_0 \exp(x_{ijkt} \beta)
\]

where \(h_0 \) is the baseline hazard, \(x_{ijkt} \) is the covariate row vector of growth rate (cm/yr, used in the Bayesian analysis), light fraction \(l_1 \), and CO2 (log10[CO2/365]), and \(\beta \) is the parameter vector.

Sample biomass

The combined effects of growth and mortality were assessed from aboveground biomass (g) of surviving...
sample trees, using species-specific allometric equations that relate biomass to height and basal diameter. Allometric coefficients were estimated from similarly sized plants harvested in the forest surrounding the FACE plots (Appendix B). A previous meta-analysis (Curtis and Wang 1998) and data from naturally recruited tree seedlings at this site (J. E. Mohan, unpublished data) suggest that CO2 does not alter plant allometric relationships. “Sample biomass” B_{kt} (in grams) was defined as the aboveground biomass summed over all survivors of a species in each ambient and elevated CO2 plot ($N = 3$), where $i =$ seedling, $j =$ subplot, $k =$ plot, and $t =$ year:

$$B_{kt} = \sum_j \sum_i b_{ijk}.$$

We used repeated-measures multivariate analysis of variance (MANOVA) to examine sample biomass per plot over time (Sokal and Rohlf 1995). Rates of biomass accumulation were analyzed using the CO2 \times year interaction term. We applied square-root transformation of biomass values to meet assumptions of normality and homoscedasticity (Sokal and Rohlf 1995). For species-specific repeated-measures of sample biomass, we used univariate tests of hypotheses because the number of dependent variables (six years of biomass measurements) was not less than the number of observations (six plots). In these cases, we based our interpretations on the Huynh-Feldt Epsilon correction of probabilities in ordinary F tests (Huynh and Feldt 1976, SAS 1990). Relative biomass accumulation per plot is obtained by dividing the total biomass remaining in the plot in 2003 by the initial biomass in 1998. This quotient was compared for ambient and elevated plots. We used two-sided Student’s t tests to test the hypothesis that relative accumulation was different under elevated CO2 conditions.

Results

Growth responses of individual plants to elevated atmospheric CO2

Most trees showed little effect of CO2 treatment on mean relative growth rate (RGR). When mean annual RGR was analyzed over the five years, individuals of only three species showed a significant response to CO2: *Ulmus alata* (+21%), *Quercus alba* (+9.5%), and nitrogen-fixing *Robinia* (+230%; Table 2). *Pinus taeda* seedlings showed a 47% growth stimulation from elevated CO2 during the first two years of the study, but only one seedling survived to 2002. When the effects of understory light availability and random individual plant variation are included in a hierarchical Bayesian analysis of absolute height growth, the effects of CO2 on plant growth are small relative to variability in response within populations (Fig. 2). However, several species displayed growth benefits from elevated CO2 (i.e., higher growth rates and decreased minimum light requirement). Among shade-intolerant taxa, *Liquidambar* and *Liriodendron* had lower light compensation points (L_{50}) for growth at elevated CO2 (Tables 3 and 4). For *Liquidambar*, 1 under elevated CO2 (L_{50}) was less than half that of growth under ambient CO2 conditions (1.8% vs. 3.7% full sunlight, respectively). Beneficial effects of elevated CO2 on the growth of *Quercus velutina*, a species of intermediate tolerance, were seen in a light compensation point at high CO2 that was less than half of L_{50} (0.22% vs. 0.47%).

Four of the five species classed as shade tolerant displayed growth benefits from elevated CO2. *Acer barbatum* and *A. rubrum* exhibited small increases in growth, particularly at light levels less than ~30% full
sunlight (Fig. 2), and decreases in light compensation points (0.74% vs. 1.8% for A. barbatum, and 1.4% vs. 4.6% for A. rubrum; Table 3). Prunus had faster growth at light levels ranging from <2% to ~60% (Fig. 2), and an I_{565} that was less than half I_{365} (1.8% vs. 3.8%; Table 3). Finally, Ulmus grew slightly taller at elevated CO$_2$ under the full range of light levels (~0.10% to ~78%; Fig. 2) and had an I_{565} almost half of the I_{365} value (2.1% vs. 3.9%; Table 3). Model selections for the Bayesian analyses of aboveground plant biomass growth often did not distinguish between CO$_2$ levels, likely because CO$_2$ affected height growth of understory trees in this low light forest more than diameter growth (Table 4). When the importance of random individual variability in growth response is considered, the biggest effect of CO$_2$ was to reduce light compensation points of select species.

Survivorship responses to atmospheric CO$_2$

Overall survivorship, averaged across individuals of all species, was slightly higher under elevated CO$_2$ conditions (mean ambient survivorship probability in 2003 was 0.49 ± 0.01 and mean elevated survivorship probability was 0.55 ± 0.01; Fig. 3). Shade-intolerant taxa generally demonstrated low survivorship under both CO$_2$ treatments, whereas shade-tolerant trees typically had high survivorship, but the effect of CO$_2$ on survivorship differed by species (Fig. 4). The strongest impact of atmospheric CO$_2$ on survivorship probability was indirect and mediated through the CO$_2$ effect on growth. For most species, the growth rate in the previous year was the most important predictor of survivorship, followed by light availability (Table 5). After these factors were taken into account in a Cox
TABLE 3. Parameter estimates from the hierarchical Bayes model that best explains annual height growth increment (cm/yr) for each species.

<table>
<thead>
<tr>
<th>Species</th>
<th>g_{max}</th>
<th>l_{365}</th>
<th>l_{565}</th>
<th>θ</th>
<th>α</th>
<th>ν_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer barbatum</td>
<td>13.9 (1.86)</td>
<td>1.78 (1.55)</td>
<td>0.740 (0.782)</td>
<td>10.0 (2.67)</td>
<td>28.9 (4.92)</td>
<td>0.116 (0.0351)</td>
</tr>
<tr>
<td>A. rubrum [D]</td>
<td>22.0 (4.51)</td>
<td>4.45 (4.56)</td>
<td>3.06 (3.29)</td>
<td>10.5 (2.47)</td>
<td>20.3 (367)</td>
<td>0.688 (0.143)</td>
</tr>
<tr>
<td>Cercis sp. [D]</td>
<td>27.4 (4.71)</td>
<td>5.42 (4.54)</td>
<td>3.71 (3.38)</td>
<td>10.5 (1.75)</td>
<td>23.4 (20.9)</td>
<td>0.656 (0.137)</td>
</tr>
<tr>
<td>Liriodendron sp. [D]</td>
<td>45.3 (4.82)</td>
<td>4.78 (3.88)</td>
<td>4.04 (3.49)</td>
<td>10.5 (1.12)</td>
<td>32.6 (5.37)</td>
<td>0.340 (0.102)</td>
</tr>
<tr>
<td>Pinus echinata [D]</td>
<td>10.7 (1.51)</td>
<td>1.30 (1.41)</td>
<td>0.832 (0.972)</td>
<td>9.72 (2.22)</td>
<td>24.1 (4.74)</td>
<td>0.515 (0.143)</td>
</tr>
<tr>
<td>Fraxinus [D]</td>
<td>14.4 (0.9)</td>
<td>0.479 (0.422)</td>
<td>...</td>
<td>8.4 (2.38)</td>
<td>48.2 (5.22)</td>
<td>...</td>
</tr>
<tr>
<td>Prunus sp. [D]</td>
<td>19.9 (3.02)</td>
<td>3.82 (3.28)</td>
<td>1.76 (1.91)</td>
<td>9.34 (4.14)</td>
<td>38.0 (14.6)</td>
<td>0.305 (0.0969)</td>
</tr>
<tr>
<td>Quercus alba [B]</td>
<td>11.0 (1.4)</td>
<td>7.05 (1.02)</td>
<td>...</td>
<td>8.77 (3.52)</td>
<td>15.8 (7.56)</td>
<td>0.184 (0.0428)</td>
</tr>
<tr>
<td>Q. phellos [A]</td>
<td>7.76 (0.467)</td>
<td>0.132 (0.105)</td>
<td>...</td>
<td>9.25 (0.943)</td>
<td>7.88 (0.499)</td>
<td>...</td>
</tr>
<tr>
<td>Q. rubra [B]</td>
<td>7.58 (0.814)</td>
<td>1.05 (1.31)</td>
<td>...</td>
<td>9.24 (3.18)</td>
<td>13.8 (4.78)</td>
<td>0.494 (0.0973)</td>
</tr>
<tr>
<td>Q. velutina [C]</td>
<td>9.01 (0.652)</td>
<td>0.466 (0.411)</td>
<td>0.215 (0.183)</td>
<td>9.67</td>
<td>5.62 (0.446)</td>
<td>...</td>
</tr>
<tr>
<td>Robinia sp. [B]</td>
<td>83.4 (10.4)</td>
<td>4.52 (2.02)</td>
<td>...</td>
<td>12.5 (2.87)</td>
<td>646 (106)</td>
<td>0.374 (0.160)</td>
</tr>
<tr>
<td>Ulmus sp. [D]</td>
<td>31.9 (7.31)</td>
<td>3.89 (3.94)</td>
<td>2.10 (2.59)</td>
<td>9.75 (3.52)</td>
<td>33.5 (487)</td>
<td>0.330 (0.102)</td>
</tr>
</tbody>
</table>

Notes: Values are posterior means with Bayesian standard errors in parentheses. Using predictive loss (d_m), we selected from four possible model combinations: (A) simple model containing neither CO2 effects nor random variation between individuals, (B) hierarchical model accounting for random variation between individuals but not accounting for CO2, (C) simple model containing CO2 effects, and (D) hierarchical model accounting for random variation and differences between CO2 concentrations. Designation of the best model is shown in brackets following each species name.

Explanations of parameters: θ represents the light level at which growth is half the maximum rate; α and ν_m are Bayesian priors on g_{ijk}. The asymptotic growth rate (g_{ijk}) is lognormal with fixed effect α and variance (on log growth rate) ν_m. $g_{\text{ijk}} \sim \text{LN}(\ln(\alpha), \nu_m)$.

FIG. 2. Continued.
proportional hazards analysis, shade-intolerant Liquidambar, intermediately tolerant Quercus rubra, and shade-tolerant Cercis were more likely to survive at elevated CO₂. Thus CO₂ does not appear to directly differentially benefit the survivorship of any shade tolerance group. CO₂ did not impact survivorship probabilities of the remaining species other than by affecting growth rates for the previous years, and this was particularly true for shade-tolerant taxa.

Sample biomass accumulation responses to atmospheric CO₂

Total sample biomass, which integrates plant growth rates and survivorship across members of a given species, increased over time at both ambient and elevated CO₂ conditions (Fig. 5). The rate of increase, however, was greater under high CO₂ ($P < 0.0001$ for the CO₂ × year interaction in a repeated-measures analysis), and elevated plots accumulated relatively more biomass by 2003 ($\frac{\text{Biomass}_{2003}}{\text{Biomass}_{1998}}$) was 1.60 ± 0.05 [mean ± SE] under ambient conditions and 2.10 ± 0.16 under elevated CO₂ conditions; $P = 0.02$). However, the rate of biomass increase and the relative amount of biomass accumulated varied among species. Most intolerant trees exhibited no effect of CO₂ on biomass accumulation (Fig. 6a). Biomass of Pinus taeda, a species that had very low survivorship and had completely died out of the three ambient plots by 2002, declined over time at elevated CO₂ and continued to persist in only one of the plots with elevated CO₂ by 2003. Nitrogen-fixing Robinia pseudoacacia had a tendency to accumulate biomass faster under elevated CO₂ ($P = 0.10$), and by 2003 had a mean biomass at high CO₂ that was eight times greater than in control plots, though the difference was not statistically significant ($16 \pm 8 \text{ g}$ vs. $1.8 \pm 0.7 \text{ g}; P = 0.21$). All three intermediately tolerant Quercus species accumulated biomass over time but none showed an overall significant effect of CO₂ on the rate of growth (Fig. 6b). After six years Quercus rubra had accumulated relatively more biomass when grown under high CO₂ ($\frac{\text{Biomass}_{2003}}{\text{Biomass}_{1998}}$) equaled 1.52 ± 0.06 under ambient conditions and 1.87 ± 0.08 under elevated conditions; $P = 0.01$). Overall, total biomass accumulation of shade-tolerant trees showed the greatest response to CO₂ enrichment (Fig. 6c). Acer barbatum and Ulmus alata both increased sample biomass faster under elevated CO₂ ($P = 0.001$ and 0.005, respectively; Fig. 6c) and accumulated relatively more biomass when given supplemental CO₂ (for A. barbatum, $\frac{\text{Biomass}_{2003}}{\text{Biomass}_{1998}}$) equaled 12.2 ± 1.7 under ambient conditions and 19.9 ± 1.9 under elevated conditions ($P = 0.018$); for U. alata $\frac{\text{Biomass}_{2003}}{\text{Biomass}_{1998}}$ equaled 1.85 ± 0.19 under ambient conditions and 2.22 ± 0.07 under elevated conditions; $P = 0.07$).

![Fig. 3](image-url) Cumulative survivorship over six years averaged across individuals of all species under ambient (triangles) and elevated (squares) CO₂ treatments at FACE (canopy gap trees not included). Overall, high CO₂ plants have slightly greater survivorship. Error bars represent ±SE.

Table 4. Parameter estimates from the model best explaining annual aboveground biomass growth increment (g/yr) for each species.

<table>
<thead>
<tr>
<th>Species</th>
<th>g_{max}</th>
<th>l_{u65}</th>
<th>l_{u65}</th>
<th>θ</th>
<th>α</th>
<th>v_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer barbatum [B]</td>
<td>0.694 (0.210)</td>
<td>0.866% (0.875)</td>
<td>...</td>
<td>10.2%</td>
<td>(3.07)</td>
<td>0.402 (0.0546)</td>
</tr>
<tr>
<td>A. rubrum [B]</td>
<td>1.69 (0.488)</td>
<td>3.01% (3.39)</td>
<td>...</td>
<td>10.5%</td>
<td>(2.15)</td>
<td>0.480 (11.8)</td>
</tr>
<tr>
<td>Cercis sp. [B]</td>
<td>1.23 (0.356)</td>
<td>3.04% (2.37)</td>
<td>...</td>
<td>10.3%</td>
<td>(1.82)</td>
<td>0.976 (1.06)</td>
</tr>
<tr>
<td>Liriodendron sp. [D]</td>
<td>3.50 (0.711)</td>
<td>5.65% (3.03)</td>
<td>...</td>
<td>10.6%</td>
<td>(2.55)</td>
<td>1.89 (0.546)</td>
</tr>
<tr>
<td>Liquidambar sp. [D]</td>
<td>3.35 (0.689)</td>
<td>4.13% (4.31)</td>
<td>...</td>
<td>10.5%</td>
<td>(2.20)</td>
<td>0.481 (2.31)</td>
</tr>
<tr>
<td>Pinus echinata [B]</td>
<td>0.601 (0.103)</td>
<td>5.43% (4.70)</td>
<td>3.48% (3.36)</td>
<td>10.2%</td>
<td>(5.91)</td>
<td>8.97 (59.5)</td>
</tr>
<tr>
<td>P. taeda [B]</td>
<td>0.836 (0.135)</td>
<td>1.84% (1.37)</td>
<td>...</td>
<td>9.99%</td>
<td>(3.16)</td>
<td>0.444 (0.0574)</td>
</tr>
<tr>
<td>Prunus sp. [B]</td>
<td>0.655 (0.224)</td>
<td>0.812% (0.781)</td>
<td>...</td>
<td>10.1%</td>
<td>(2.82)</td>
<td>0.919 (0.0886)</td>
</tr>
<tr>
<td>Quercus alba [B]</td>
<td>1.44 (0.160)</td>
<td>0.615% (0.832)</td>
<td>...</td>
<td>9.42%</td>
<td>(3.08)</td>
<td>0.664 (0.117)</td>
</tr>
<tr>
<td>Q. phellos [A]</td>
<td>0.586 (0.0548)</td>
<td>0.331% (0.293)</td>
<td>...</td>
<td>9.39%</td>
<td>(2.20)</td>
<td>0.188 (0.0114)</td>
</tr>
<tr>
<td>Q. rubra [D]</td>
<td>1.27 (0.168)</td>
<td>1.59% (1.67)</td>
<td>0.966% (1.09)</td>
<td>9.85%</td>
<td>(3.06)</td>
<td>1.40 (0.150)</td>
</tr>
<tr>
<td>Q. velutina [D]</td>
<td>0.929 (0.143)</td>
<td>0.799% (0.861)</td>
<td>0.468% (0.511)</td>
<td>8.32%</td>
<td>(3.56)</td>
<td>0.503 (0.0536)</td>
</tr>
<tr>
<td>Robinia sp. [B]</td>
<td>19.7 (4.31)</td>
<td>5.47% (1.95)</td>
<td>...</td>
<td>11.5%</td>
<td>(3.22)</td>
<td>143 (21.5)</td>
</tr>
<tr>
<td>Ulmus sp. [B]</td>
<td>1.23 (0.525)</td>
<td>2.45% (2.51)</td>
<td>...</td>
<td>10.5%</td>
<td>(1.87)</td>
<td>0.547 (0.159)</td>
</tr>
</tbody>
</table>

Notes: Using predictive loss (l_{u65}), we selected from four possible model combinations: (A) simple model containing neither CO₂ effects nor random variation between individuals, (B) hierarchical model accounting for random variation between individuals but not accounting for CO₂, (C) simple model containing CO₂ effects, and (D) hierarchical model accounting for random variation and differences between CO₂ concentrations. Designation of the best model is shown in brackets following each species name.

See Table 3 for explanation of parameters.
This experimental analysis of forest successional response to elevated CO₂ indicates that some tree species, when given supplemental carbon, exhibit small increases in annual growth and are better able to maintain positive growth under the low light conditions typical of forest understory environments (Fig. 2, Tables 2 and 3). Such effects may accumulate over time to affect future demographic patterns of forest trees (Bazzaz 1996, Shaver et al. 2000, Nowak et al. 2004). Species-specific effects of CO₂ on the growth–light relationship may have particular relevance for future forest dynamics, given that light availability explains most of the variation in the growth of temperate forest saplings (Finzi and Canham 2000). However, the effects of CO₂ enrichment on tree growth were less than reported in previous studies.

When averaged across species, trees survive better in this shady forest understory given CO₂ enrichment, but few individual taxa actually display significant effects of atmospheric CO₂ on survivorship (Fig. 4), apart from the impact of CO₂ on previous years’ growth rate (Table 5; Wyckoff and Clark 2002). Six species exhibited an important indirect effect of CO₂ on survivorship.
(“indirect” referring to an effect on survivorship that is mediated through a CO2 effect on growth) by having previous years’ growth as an important predictor of survivorship, and also exhibiting greater growth under low light conditions when exposed to supplemental CO2. These included *Acer rubrum*, *Cercis*, *Ulmus*, *Quercus velutina*, *Liriodendron*, and *Liquidambar*. The three species with a significant direct effect of CO2 on survivorship (i.e., *Liquidambar*, *Quercus rubra*, and *Cercis*) cross the range of shade tolerance classifications, so we see no evidence of CO2 differentially impacting the survivorship of different successional functional groups. Further, contrary to our expectation, supplemental CO2 did not enhance the survivorship of most of the shade-intolerant tree species, which at maturity form the most productive forest ecosystems.

When we extrapolate the results from CO2 effects on individual plant growth and survivorship to calculate biomass accumulation rates of species, a proxy for species competitive abilities (Nowak et al. 2004), we find that total sample biomass accumulates faster under high CO2 (Fig. 5). Overall, understory sample biomass was 26% larger under elevated CO2 conditions by 2003 (771 ± 65 g [mean ± SE] for elevated vs. 612 ± 40 g for ambient CO2; *P* = 0.10). While understory productivity is a small component of current forest NPP (DeLucia et al. 1999), species-specific data can be used to aid forecasts of future competitive outcomes (Bolker et al. 1995, Shaver et al. 2000). Sample biomass of shade-intolerant trees is markedly unresponsive to elevated CO2 (Fig. 6a). Although some shade-intolerant species such as *Pinus taeda* exhibit increased individual plant growth with CO2 enrichment, this is negated by consistently low survivorship. Due to its relatively low survivorship even under elevated CO2, it is likely that the increased sample biomass of nitrogen-fixing *Robinia* at high CO2 is a transient response and unlikely to stimulate future forest productivity. Species of intermediate tolerance, *Quercus alba* and *Q. velutina*, do not show sample biomass responses to CO2, although after five years *Q. rubra* accumulated relatively more sample biomass at elevated CO2 conditions (Fig. 6b). Shade-tolerant tree species show the greatest stimulation of sample biomass from CO2 enrichment (Fig. 6c), particularly *Acer barbatum* (southern sugar maple) and *Ulmus alata* (winged elm), subcanopy trees that are typically neither very productive nor large at maturity (Burns and Honkala 1990). The benefit of increased atmospheric CO2 for the success of shade-tolerant tree species in a forested ecosystem supports findings of earlier work using pots and growth chambers (Bazzaz et al. 1990, Bazzaz and Miao 1993, Kubiske and Pregitzer 1996, 1997, Kinney and Lindroth 1997, Kerstiens 1998, 2001, Hättenschwiler and Körner 2000). The most responsive species in terms of sample biomass accumulation, *Acer barbatum* and *Ulmus alata*, are also two of the best survivors under ambient CO2 conditions (94 ±

<table>
<thead>
<tr>
<th>Species</th>
<th>Growth</th>
<th>Light</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer barbatum</td>
<td>0.412 (0.090)***</td>
<td></td>
<td>4.611 (1.339)***</td>
</tr>
<tr>
<td>A. rubrum</td>
<td>0.165 (0.063)***</td>
<td>10.507 (3.910)**</td>
<td></td>
</tr>
<tr>
<td>Cercis sp.</td>
<td>0.148 (0.042)***</td>
<td>19.546 (7.173)**</td>
<td>9.449 (3.648)**</td>
</tr>
<tr>
<td>Liriodendron sp.</td>
<td>0.0933 (0.052)†</td>
<td>7.597 (2.980)*</td>
<td></td>
</tr>
<tr>
<td>Liquidambar sp.</td>
<td></td>
<td>8.648 (1.620)***</td>
<td></td>
</tr>
<tr>
<td>Pinus echinata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. taeda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus alba</td>
<td>0.269 (0.105)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q. phellos</td>
<td>0.423 (0.117)***</td>
<td>6.094 (3.152)†</td>
<td>4.774 (2.498)†</td>
</tr>
<tr>
<td>Q. rubra</td>
<td>1.300 (0.313)***</td>
<td>48.960 (11.100)***</td>
<td></td>
</tr>
<tr>
<td>Q. velutina</td>
<td>0.106 (0.039)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robinia sp.</td>
<td>0.226 (0.093)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Columns depict results of sequential term additions (growth rate in previous year, light level, and CO2 treatment) denoting parameter estimates, with standard errors reported in parentheses. Estimates are order dependent. *P* < 0.10; **P* < 0.05; ***P* < 0.01; ****P* < 0.001; cells without numbers showed no significant effect.
6% and 88 ± 3% surviving, respectively; Fig. 4). Although many studies examining the implications of elevated CO₂ on future community composition base conclusions solely on individual plant growth, the present study suggests that low light survivorship is an important predictor of population-scale responses to elevated CO₂.

Future Implications

Although the relative success of juvenile trees is only one phase of forest development, individuals in the “sapling bank” typically have the greatest opportunities of attaining canopy dominance following the death of a single or several canopy trees (Pickett and White 1985). Which individuals reach the canopy is strongly influenced by juvenile growth and survival (Pacala et al. 1996, Landis and Peart 2005). Given the low survivorship of shade-intolerant tree species under both CO₂ concentrations, we have no evidence that highly productive stands dominated by such taxa will necessarily represent temperate forests of the future barring human intervention. Our data suggest that elevated CO₂ may favor recruitment of less-productive, shade-tolerant tree species, and not cause a large fertilization effect on global forest productivity. This would discount the potential for enhanced forest growth and carbon accumulation to compensate for anthropogenically derived increases in levels of atmospheric CO₂ (Idso et al. 1991, Kirschbaum 2003, Deckmyn et al. 2004). If the growth of shade-tolerant juveniles is accompanied by increased mortality of canopy trees, suggested by the faster growth (DeLucia et al. 1999) and earlier ontogenetic development (LaDeau and Clark 2001) of the *Pinus taeda* canopy at elevated CO₂ in the Duke free-air CO₂ enrichment (FACE) experiment, forest succession may accelerate. Unlike the prolonged coexistence of

![Fig. 6. Mean sample biomass over time for (a) shade-intolerant tree species, (b) intermediately tolerant tree species, and (c) shade-tolerant tree species growing at ambient (circles) and elevated (squares) CO₂ treatments at FACE (canopy gap trees not included; N = 3).](image-url)

June 2007 1209 CO₂ ENRICHMENT OF A FOREST ECOSYSTEM
early- and late-successional species observed with CO₂ enrichment of a pasture community (Potley and Vasseur 2003), and similar to the accelerated successional change seen in a grassland ecosystem (Polley et al. 2003), we find that future competitive dynamics among temperate forest trees may be shifted toward late-successional species.

Acknowledgments

G. Hendrey, J. Nagy, and K. Lewin were instrumental in construction and maintenance of the FACE facilities. The following persons provided valuable field assistance: D. LeBauer, P. Frankson, M. Anderson, J. McKeilips, J. Pippen, E. Ball, I. Ibanez, A. Carrol, M. Cianfrani, D. Snyder, M. Welsh, R. Mohan, and B. Frankson. We thank the staff of the Duke Forest, and personnel from the Duke University Phytotron and Greenhouses. This work was enhanced by discussions with B. Beckage, P. Camill, N. Christensen, M. Dietze, A. Finzi, J. HilleRisLambers, I. Ibanez, S. LaDeau, M. Lavine, J. Lichter, J. Lynch, J. McLachlan, R. Peet, B. Strain, M. Wolosin, and P. Wyckoff. The manuscript was improved by the suggestions of two anonymous reviewers. This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-95ER62083, and by Terrestrial Ecosystems and Global Change (TECO) Grant No. DE-FG02-95ER62463.

Literature Cited

APPENDIX A

Mass balance equation calculating the CO2 concentration in the understory of elevated plots at the Duke Forest FACE experiment (Ecological Archives A017-044-A1).

APPENDIX B

Allometric equations developed for species of the FACE site for aboveground biomass (Ecological Archives A017-044-A2).

APPENDIX C

Hierarchical Bayesian analysis of plant growth at variable light levels at ambient and elevated atmospheric CO2 at the Duke University FACE experiment (Ecological Archives A017-044-A3).